\(\int \frac {(d+e x)^{5/2}}{(f+g x)^3 (a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}} \, dx\) [678]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 46, antiderivative size = 342 \[ \int \frac {(d+e x)^{5/2}}{(f+g x)^3 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=-\frac {2 (d+e x)^{3/2}}{3 (c d f-a e g) (f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}+\frac {14 g \sqrt {d+e x}}{3 (c d f-a e g)^2 (f+g x)^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {35 g^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{6 (c d f-a e g)^3 \sqrt {d+e x} (f+g x)^2}+\frac {35 c d g^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 (c d f-a e g)^4 \sqrt {d+e x} (f+g x)}+\frac {35 c^2 d^2 g^{3/2} \arctan \left (\frac {\sqrt {g} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d f-a e g} \sqrt {d+e x}}\right )}{4 (c d f-a e g)^{9/2}} \]

[Out]

-2/3*(e*x+d)^(3/2)/(-a*e*g+c*d*f)/(g*x+f)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)+35/4*c^2*d^2*g^(3/2)*arcta
n(g^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(-a*e*g+c*d*f)^(1/2)/(e*x+d)^(1/2))/(-a*e*g+c*d*f)^(9/2)+14/
3*g*(e*x+d)^(1/2)/(-a*e*g+c*d*f)^2/(g*x+f)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+35/6*g^2*(a*d*e+(a*e^2+c*
d^2)*x+c*d*e*x^2)^(1/2)/(-a*e*g+c*d*f)^3/(g*x+f)^2/(e*x+d)^(1/2)+35/4*c*d*g^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2
)^(1/2)/(-a*e*g+c*d*f)^4/(g*x+f)/(e*x+d)^(1/2)

Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 342, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.087, Rules used = {882, 886, 888, 211} \[ \int \frac {(d+e x)^{5/2}}{(f+g x)^3 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=\frac {35 c^2 d^2 g^{3/2} \arctan \left (\frac {\sqrt {g} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d f-a e g}}\right )}{4 (c d f-a e g)^{9/2}}+\frac {35 c d g^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 \sqrt {d+e x} (f+g x) (c d f-a e g)^4}+\frac {35 g^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{6 \sqrt {d+e x} (f+g x)^2 (c d f-a e g)^3}+\frac {14 g \sqrt {d+e x}}{3 (f+g x)^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g)^2}-\frac {2 (d+e x)^{3/2}}{3 (f+g x)^2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2} (c d f-a e g)} \]

[In]

Int[(d + e*x)^(5/2)/((f + g*x)^3*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)),x]

[Out]

(-2*(d + e*x)^(3/2))/(3*(c*d*f - a*e*g)*(f + g*x)^2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)) + (14*g*Sqr
t[d + e*x])/(3*(c*d*f - a*e*g)^2*(f + g*x)^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) + (35*g^2*Sqrt[a*d*e
 + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(6*(c*d*f - a*e*g)^3*Sqrt[d + e*x]*(f + g*x)^2) + (35*c*d*g^2*Sqrt[a*d*e +
(c*d^2 + a*e^2)*x + c*d*e*x^2])/(4*(c*d*f - a*e*g)^4*Sqrt[d + e*x]*(f + g*x)) + (35*c^2*d^2*g^(3/2)*ArcTan[(Sq
rt[g]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(Sqrt[c*d*f - a*e*g]*Sqrt[d + e*x])])/(4*(c*d*f - a*e*g)^(9
/2))

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 882

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[e^2*(d + e*x)^(m - 1)*(f + g*x)^(n + 1)*((a + b*x + c*x^2)^(p + 1)/((p + 1)*(c*e*f + c*d*g - b*e*g))), x]
 + Dist[e^2*g*((m - n - 2)/((p + 1)*(c*e*f + c*d*g - b*e*g))), Int[(d + e*x)^(m - 1)*(f + g*x)^n*(a + b*x + c*
x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[
c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0] && LtQ[p, -1] && RationalQ[n]

Rule 886

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[(-e^2)*(d + e*x)^(m - 1)*(f + g*x)^(n + 1)*((a + b*x + c*x^2)^(p + 1)/((n + 1)*(c*e*f + c*d*g - b*e*g))),
 x] - Dist[c*e*((m - n - 2)/((n + 1)*(c*e*f + c*d*g - b*e*g))), Int[(d + e*x)^m*(f + g*x)^(n + 1)*(a + b*x + c
*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*
d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0] && LtQ[n, -1] && IntegerQ[2*p]

Rule 888

Int[Sqrt[(d_) + (e_.)*(x_)]/(((f_.) + (g_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[
2*e^2, Subst[Int[1/(c*(e*f + d*g) - b*e*g + e^2*g*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; Fre
eQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 (d+e x)^{3/2}}{3 (c d f-a e g) (f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}-\frac {(7 g) \int \frac {(d+e x)^{3/2}}{(f+g x)^3 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx}{3 (c d f-a e g)} \\ & = -\frac {2 (d+e x)^{3/2}}{3 (c d f-a e g) (f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}+\frac {14 g \sqrt {d+e x}}{3 (c d f-a e g)^2 (f+g x)^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {\left (35 g^2\right ) \int \frac {\sqrt {d+e x}}{(f+g x)^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{3 (c d f-a e g)^2} \\ & = -\frac {2 (d+e x)^{3/2}}{3 (c d f-a e g) (f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}+\frac {14 g \sqrt {d+e x}}{3 (c d f-a e g)^2 (f+g x)^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {35 g^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{6 (c d f-a e g)^3 \sqrt {d+e x} (f+g x)^2}+\frac {\left (35 c d g^2\right ) \int \frac {\sqrt {d+e x}}{(f+g x)^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{4 (c d f-a e g)^3} \\ & = -\frac {2 (d+e x)^{3/2}}{3 (c d f-a e g) (f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}+\frac {14 g \sqrt {d+e x}}{3 (c d f-a e g)^2 (f+g x)^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {35 g^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{6 (c d f-a e g)^3 \sqrt {d+e x} (f+g x)^2}+\frac {35 c d g^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 (c d f-a e g)^4 \sqrt {d+e x} (f+g x)}+\frac {\left (35 c^2 d^2 g^2\right ) \int \frac {\sqrt {d+e x}}{(f+g x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{8 (c d f-a e g)^4} \\ & = -\frac {2 (d+e x)^{3/2}}{3 (c d f-a e g) (f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}+\frac {14 g \sqrt {d+e x}}{3 (c d f-a e g)^2 (f+g x)^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {35 g^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{6 (c d f-a e g)^3 \sqrt {d+e x} (f+g x)^2}+\frac {35 c d g^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 (c d f-a e g)^4 \sqrt {d+e x} (f+g x)}+\frac {\left (35 c^2 d^2 e^2 g^2\right ) \text {Subst}\left (\int \frac {1}{-e \left (c d^2+a e^2\right ) g+c d e (e f+d g)+e^2 g x^2} \, dx,x,\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}}\right )}{4 (c d f-a e g)^4} \\ & = -\frac {2 (d+e x)^{3/2}}{3 (c d f-a e g) (f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}+\frac {14 g \sqrt {d+e x}}{3 (c d f-a e g)^2 (f+g x)^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {35 g^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{6 (c d f-a e g)^3 \sqrt {d+e x} (f+g x)^2}+\frac {35 c d g^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 (c d f-a e g)^4 \sqrt {d+e x} (f+g x)}+\frac {35 c^2 d^2 g^{3/2} \tan ^{-1}\left (\frac {\sqrt {g} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d f-a e g} \sqrt {d+e x}}\right )}{4 (c d f-a e g)^{9/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.74 (sec) , antiderivative size = 240, normalized size of antiderivative = 0.70 \[ \int \frac {(d+e x)^{5/2}}{(f+g x)^3 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=\frac {c^2 d^2 \sqrt {d+e x} \left (\frac {-6 a^3 e^3 g^3+3 a^2 c d e^2 g^2 (13 f+7 g x)+2 a c^2 d^2 e g \left (40 f^2+119 f g x+70 g^2 x^2\right )+c^3 d^3 \left (-8 f^3+56 f^2 g x+175 f g^2 x^2+105 g^3 x^3\right )}{c^2 d^2 (c d f-a e g)^4 (a e+c d x) (f+g x)^2}+\frac {105 g^{3/2} \sqrt {a e+c d x} \arctan \left (\frac {\sqrt {g} \sqrt {a e+c d x}}{\sqrt {c d f-a e g}}\right )}{(c d f-a e g)^{9/2}}\right )}{12 \sqrt {(a e+c d x) (d+e x)}} \]

[In]

Integrate[(d + e*x)^(5/2)/((f + g*x)^3*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)),x]

[Out]

(c^2*d^2*Sqrt[d + e*x]*((-6*a^3*e^3*g^3 + 3*a^2*c*d*e^2*g^2*(13*f + 7*g*x) + 2*a*c^2*d^2*e*g*(40*f^2 + 119*f*g
*x + 70*g^2*x^2) + c^3*d^3*(-8*f^3 + 56*f^2*g*x + 175*f*g^2*x^2 + 105*g^3*x^3))/(c^2*d^2*(c*d*f - a*e*g)^4*(a*
e + c*d*x)*(f + g*x)^2) + (105*g^(3/2)*Sqrt[a*e + c*d*x]*ArcTan[(Sqrt[g]*Sqrt[a*e + c*d*x])/Sqrt[c*d*f - a*e*g
]])/(c*d*f - a*e*g)^(9/2)))/(12*Sqrt[(a*e + c*d*x)*(d + e*x)])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(659\) vs. \(2(304)=608\).

Time = 0.54 (sec) , antiderivative size = 660, normalized size of antiderivative = 1.93

method result size
default \(-\frac {\sqrt {\left (c d x +a e \right ) \left (e x +d \right )}\, \left (105 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c^{3} d^{3} g^{4} x^{3} \sqrt {c d x +a e}+105 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) a \,c^{2} d^{2} e \,g^{4} x^{2} \sqrt {c d x +a e}+210 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c^{3} d^{3} f \,g^{3} x^{2} \sqrt {c d x +a e}+210 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) a \,c^{2} d^{2} e f \,g^{3} x \sqrt {c d x +a e}+105 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) c^{3} d^{3} f^{2} g^{2} x \sqrt {c d x +a e}-105 \sqrt {\left (a e g -c d f \right ) g}\, c^{3} d^{3} g^{3} x^{3}+105 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -c d f \right ) g}}\right ) a \,c^{2} d^{2} e \,f^{2} g^{2} \sqrt {c d x +a e}-140 \sqrt {\left (a e g -c d f \right ) g}\, a \,c^{2} d^{2} e \,g^{3} x^{2}-175 \sqrt {\left (a e g -c d f \right ) g}\, c^{3} d^{3} f \,g^{2} x^{2}-21 \sqrt {\left (a e g -c d f \right ) g}\, a^{2} c d \,e^{2} g^{3} x -238 \sqrt {\left (a e g -c d f \right ) g}\, a \,c^{2} d^{2} e f \,g^{2} x -56 \sqrt {\left (a e g -c d f \right ) g}\, c^{3} d^{3} f^{2} g x +6 \sqrt {\left (a e g -c d f \right ) g}\, a^{3} e^{3} g^{3}-39 \sqrt {\left (a e g -c d f \right ) g}\, a^{2} c d \,e^{2} f \,g^{2}-80 \sqrt {\left (a e g -c d f \right ) g}\, a \,c^{2} d^{2} e \,f^{2} g +8 \sqrt {\left (a e g -c d f \right ) g}\, c^{3} d^{3} f^{3}\right )}{12 \sqrt {e x +d}\, \left (c d x +a e \right )^{2} \left (a e g -c d f \right )^{4} \left (g x +f \right )^{2} \sqrt {\left (a e g -c d f \right ) g}}\) \(660\)

[In]

int((e*x+d)^(5/2)/(g*x+f)^3/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x,method=_RETURNVERBOSE)

[Out]

-1/12*((c*d*x+a*e)*(e*x+d))^(1/2)*(105*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2))*c^3*d^3*g^4*x^3*(c
*d*x+a*e)^(1/2)+105*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2))*a*c^2*d^2*e*g^4*x^2*(c*d*x+a*e)^(1/2)
+210*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2))*c^3*d^3*f*g^3*x^2*(c*d*x+a*e)^(1/2)+210*arctanh(g*(c
*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2))*a*c^2*d^2*e*f*g^3*x*(c*d*x+a*e)^(1/2)+105*arctanh(g*(c*d*x+a*e)^(1/2)
/((a*e*g-c*d*f)*g)^(1/2))*c^3*d^3*f^2*g^2*x*(c*d*x+a*e)^(1/2)-105*((a*e*g-c*d*f)*g)^(1/2)*c^3*d^3*g^3*x^3+105*
arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2))*a*c^2*d^2*e*f^2*g^2*(c*d*x+a*e)^(1/2)-140*((a*e*g-c*d*f)*
g)^(1/2)*a*c^2*d^2*e*g^3*x^2-175*((a*e*g-c*d*f)*g)^(1/2)*c^3*d^3*f*g^2*x^2-21*((a*e*g-c*d*f)*g)^(1/2)*a^2*c*d*
e^2*g^3*x-238*((a*e*g-c*d*f)*g)^(1/2)*a*c^2*d^2*e*f*g^2*x-56*((a*e*g-c*d*f)*g)^(1/2)*c^3*d^3*f^2*g*x+6*((a*e*g
-c*d*f)*g)^(1/2)*a^3*e^3*g^3-39*((a*e*g-c*d*f)*g)^(1/2)*a^2*c*d*e^2*f*g^2-80*((a*e*g-c*d*f)*g)^(1/2)*a*c^2*d^2
*e*f^2*g+8*((a*e*g-c*d*f)*g)^(1/2)*c^3*d^3*f^3)/(e*x+d)^(1/2)/(c*d*x+a*e)^2/(a*e*g-c*d*f)^4/(g*x+f)^2/((a*e*g-
c*d*f)*g)^(1/2)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1446 vs. \(2 (304) = 608\).

Time = 1.31 (sec) , antiderivative size = 2935, normalized size of antiderivative = 8.58 \[ \int \frac {(d+e x)^{5/2}}{(f+g x)^3 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=\text {Too large to display} \]

[In]

integrate((e*x+d)^(5/2)/(g*x+f)^3/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="fricas")

[Out]

[1/24*(105*(c^4*d^4*e*g^3*x^5 + a^2*c^2*d^3*e^2*f^2*g + (2*c^4*d^4*e*f*g^2 + (c^4*d^5 + 2*a*c^3*d^3*e^2)*g^3)*
x^4 + (c^4*d^4*e*f^2*g + 2*(c^4*d^5 + 2*a*c^3*d^3*e^2)*f*g^2 + (2*a*c^3*d^4*e + a^2*c^2*d^2*e^3)*g^3)*x^3 + (a
^2*c^2*d^3*e^2*g^3 + (c^4*d^5 + 2*a*c^3*d^3*e^2)*f^2*g + 2*(2*a*c^3*d^4*e + a^2*c^2*d^2*e^3)*f*g^2)*x^2 + (2*a
^2*c^2*d^3*e^2*f*g^2 + (2*a*c^3*d^4*e + a^2*c^2*d^2*e^3)*f^2*g)*x)*sqrt(-g/(c*d*f - a*e*g))*log(-(c*d*e*g*x^2
- c*d^2*f + 2*a*d*e*g + 2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(c*d*f - a*e*g)*sqrt(e*x + d)*sqrt(-g/(c
*d*f - a*e*g)) - (c*d*e*f - (c*d^2 + 2*a*e^2)*g)*x)/(e*g*x^2 + d*f + (e*f + d*g)*x)) + 2*(105*c^3*d^3*g^3*x^3
- 8*c^3*d^3*f^3 + 80*a*c^2*d^2*e*f^2*g + 39*a^2*c*d*e^2*f*g^2 - 6*a^3*e^3*g^3 + 35*(5*c^3*d^3*f*g^2 + 4*a*c^2*
d^2*e*g^3)*x^2 + 7*(8*c^3*d^3*f^2*g + 34*a*c^2*d^2*e*f*g^2 + 3*a^2*c*d*e^2*g^3)*x)*sqrt(c*d*e*x^2 + a*d*e + (c
*d^2 + a*e^2)*x)*sqrt(e*x + d))/(a^2*c^4*d^5*e^2*f^6 - 4*a^3*c^3*d^4*e^3*f^5*g + 6*a^4*c^2*d^3*e^4*f^4*g^2 - 4
*a^5*c*d^2*e^5*f^3*g^3 + a^6*d*e^6*f^2*g^4 + (c^6*d^6*e*f^4*g^2 - 4*a*c^5*d^5*e^2*f^3*g^3 + 6*a^2*c^4*d^4*e^3*
f^2*g^4 - 4*a^3*c^3*d^3*e^4*f*g^5 + a^4*c^2*d^2*e^5*g^6)*x^5 + (2*c^6*d^6*e*f^5*g + (c^6*d^7 - 6*a*c^5*d^5*e^2
)*f^4*g^2 - 4*(a*c^5*d^6*e - a^2*c^4*d^4*e^3)*f^3*g^3 + 2*(3*a^2*c^4*d^5*e^2 + 2*a^3*c^3*d^3*e^4)*f^2*g^4 - 2*
(2*a^3*c^3*d^4*e^3 + 3*a^4*c^2*d^2*e^5)*f*g^5 + (a^4*c^2*d^3*e^4 + 2*a^5*c*d*e^6)*g^6)*x^4 + (c^6*d^6*e*f^6 +
2*c^6*d^7*f^5*g - 6*a^4*c^2*d^3*e^4*f*g^5 - 3*(2*a*c^5*d^6*e + 3*a^2*c^4*d^4*e^3)*f^4*g^2 + 4*(a^2*c^4*d^5*e^2
 + 4*a^3*c^3*d^3*e^4)*f^3*g^3 + (4*a^3*c^3*d^4*e^3 - 9*a^4*c^2*d^2*e^5)*f^2*g^4 + (2*a^5*c*d^2*e^5 + a^6*e^7)*
g^6)*x^3 - (6*a^2*c^4*d^4*e^3*f^5*g - 2*a^6*e^7*f*g^5 - a^6*d*e^6*g^6 - (c^6*d^7 + 2*a*c^5*d^5*e^2)*f^6 + (9*a
^2*c^4*d^5*e^2 - 4*a^3*c^3*d^3*e^4)*f^4*g^2 - 4*(4*a^3*c^3*d^4*e^3 + a^4*c^2*d^2*e^5)*f^3*g^3 + 3*(3*a^4*c^2*d
^3*e^4 + 2*a^5*c*d*e^6)*f^2*g^4)*x^2 + (2*a^6*d*e^6*f*g^5 + (2*a*c^5*d^6*e + a^2*c^4*d^4*e^3)*f^6 - 2*(3*a^2*c
^4*d^5*e^2 + 2*a^3*c^3*d^3*e^4)*f^5*g + 2*(2*a^3*c^3*d^4*e^3 + 3*a^4*c^2*d^2*e^5)*f^4*g^2 + 4*(a^4*c^2*d^3*e^4
 - a^5*c*d*e^6)*f^3*g^3 - (6*a^5*c*d^2*e^5 - a^6*e^7)*f^2*g^4)*x), 1/12*(105*(c^4*d^4*e*g^3*x^5 + a^2*c^2*d^3*
e^2*f^2*g + (2*c^4*d^4*e*f*g^2 + (c^4*d^5 + 2*a*c^3*d^3*e^2)*g^3)*x^4 + (c^4*d^4*e*f^2*g + 2*(c^4*d^5 + 2*a*c^
3*d^3*e^2)*f*g^2 + (2*a*c^3*d^4*e + a^2*c^2*d^2*e^3)*g^3)*x^3 + (a^2*c^2*d^3*e^2*g^3 + (c^4*d^5 + 2*a*c^3*d^3*
e^2)*f^2*g + 2*(2*a*c^3*d^4*e + a^2*c^2*d^2*e^3)*f*g^2)*x^2 + (2*a^2*c^2*d^3*e^2*f*g^2 + (2*a*c^3*d^4*e + a^2*
c^2*d^2*e^3)*f^2*g)*x)*sqrt(g/(c*d*f - a*e*g))*arctan(-sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(c*d*f - a*
e*g)*sqrt(e*x + d)*sqrt(g/(c*d*f - a*e*g))/(c*d*e*g*x^2 + a*d*e*g + (c*d^2 + a*e^2)*g*x)) + (105*c^3*d^3*g^3*x
^3 - 8*c^3*d^3*f^3 + 80*a*c^2*d^2*e*f^2*g + 39*a^2*c*d*e^2*f*g^2 - 6*a^3*e^3*g^3 + 35*(5*c^3*d^3*f*g^2 + 4*a*c
^2*d^2*e*g^3)*x^2 + 7*(8*c^3*d^3*f^2*g + 34*a*c^2*d^2*e*f*g^2 + 3*a^2*c*d*e^2*g^3)*x)*sqrt(c*d*e*x^2 + a*d*e +
 (c*d^2 + a*e^2)*x)*sqrt(e*x + d))/(a^2*c^4*d^5*e^2*f^6 - 4*a^3*c^3*d^4*e^3*f^5*g + 6*a^4*c^2*d^3*e^4*f^4*g^2
- 4*a^5*c*d^2*e^5*f^3*g^3 + a^6*d*e^6*f^2*g^4 + (c^6*d^6*e*f^4*g^2 - 4*a*c^5*d^5*e^2*f^3*g^3 + 6*a^2*c^4*d^4*e
^3*f^2*g^4 - 4*a^3*c^3*d^3*e^4*f*g^5 + a^4*c^2*d^2*e^5*g^6)*x^5 + (2*c^6*d^6*e*f^5*g + (c^6*d^7 - 6*a*c^5*d^5*
e^2)*f^4*g^2 - 4*(a*c^5*d^6*e - a^2*c^4*d^4*e^3)*f^3*g^3 + 2*(3*a^2*c^4*d^5*e^2 + 2*a^3*c^3*d^3*e^4)*f^2*g^4 -
 2*(2*a^3*c^3*d^4*e^3 + 3*a^4*c^2*d^2*e^5)*f*g^5 + (a^4*c^2*d^3*e^4 + 2*a^5*c*d*e^6)*g^6)*x^4 + (c^6*d^6*e*f^6
 + 2*c^6*d^7*f^5*g - 6*a^4*c^2*d^3*e^4*f*g^5 - 3*(2*a*c^5*d^6*e + 3*a^2*c^4*d^4*e^3)*f^4*g^2 + 4*(a^2*c^4*d^5*
e^2 + 4*a^3*c^3*d^3*e^4)*f^3*g^3 + (4*a^3*c^3*d^4*e^3 - 9*a^4*c^2*d^2*e^5)*f^2*g^4 + (2*a^5*c*d^2*e^5 + a^6*e^
7)*g^6)*x^3 - (6*a^2*c^4*d^4*e^3*f^5*g - 2*a^6*e^7*f*g^5 - a^6*d*e^6*g^6 - (c^6*d^7 + 2*a*c^5*d^5*e^2)*f^6 + (
9*a^2*c^4*d^5*e^2 - 4*a^3*c^3*d^3*e^4)*f^4*g^2 - 4*(4*a^3*c^3*d^4*e^3 + a^4*c^2*d^2*e^5)*f^3*g^3 + 3*(3*a^4*c^
2*d^3*e^4 + 2*a^5*c*d*e^6)*f^2*g^4)*x^2 + (2*a^6*d*e^6*f*g^5 + (2*a*c^5*d^6*e + a^2*c^4*d^4*e^3)*f^6 - 2*(3*a^
2*c^4*d^5*e^2 + 2*a^3*c^3*d^3*e^4)*f^5*g + 2*(2*a^3*c^3*d^4*e^3 + 3*a^4*c^2*d^2*e^5)*f^4*g^2 + 4*(a^4*c^2*d^3*
e^4 - a^5*c*d*e^6)*f^3*g^3 - (6*a^5*c*d^2*e^5 - a^6*e^7)*f^2*g^4)*x)]

Sympy [F(-1)]

Timed out. \[ \int \frac {(d+e x)^{5/2}}{(f+g x)^3 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate((e*x+d)**(5/2)/(g*x+f)**3/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(d+e x)^{5/2}}{(f+g x)^3 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=\int { \frac {{\left (e x + d\right )}^{\frac {5}{2}}}{{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {5}{2}} {\left (g x + f\right )}^{3}} \,d x } \]

[In]

integrate((e*x+d)^(5/2)/(g*x+f)^3/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="maxima")

[Out]

integrate((e*x + d)^(5/2)/((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(5/2)*(g*x + f)^3), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2347 vs. \(2 (304) = 608\).

Time = 1.14 (sec) , antiderivative size = 2347, normalized size of antiderivative = 6.86 \[ \int \frac {(d+e x)^{5/2}}{(f+g x)^3 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=\text {Too large to display} \]

[In]

integrate((e*x+d)^(5/2)/(g*x+f)^3/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="giac")

[Out]

1/12*(105*c^2*d^2*g^2*arctan(sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e))/((c^4*d^4*
e^3*f^4*abs(e) - 4*a*c^3*d^3*e^4*f^3*g*abs(e) + 6*a^2*c^2*d^2*e^5*f^2*g^2*abs(e) - 4*a^3*c*d*e^6*f*g^3*abs(e)
+ a^4*e^7*g^4*abs(e))*sqrt(c*d*f*g - a*e*g^2)*e) - 8*(c^3*d^3*e^2*f - a*c^2*d^2*e^3*g - 9*((e*x + d)*c*d*e - c
*d^2*e + a*e^3)*c^2*d^2*g)/((c^4*d^4*e^3*f^4*abs(e) - 4*a*c^3*d^3*e^4*f^3*g*abs(e) + 6*a^2*c^2*d^2*e^5*f^2*g^2
*abs(e) - 4*a^3*c*d*e^6*f*g^3*abs(e) + a^4*e^7*g^4*abs(e))*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(3/2)) + 3*(13*
sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*c^3*d^3*e^2*f*g^2 - 13*sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*a*c^2*d
^2*e^3*g^3 + 11*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(3/2)*c^2*d^2*g^3)/((c^4*d^4*e^3*f^4*abs(e) - 4*a*c^3*d^3*
e^4*f^3*g*abs(e) + 6*a^2*c^2*d^2*e^5*f^2*g^2*abs(e) - 4*a^3*c*d*e^6*f*g^3*abs(e) + a^4*e^7*g^4*abs(e))*(c*d*e^
2*f - a*e^3*g + ((e*x + d)*c*d*e - c*d^2*e + a*e^3)*g)^2))*e^5 - 1/12*(105*sqrt(-c*d^2*e + a*e^3)*c^3*d^4*e^3*
f^2*g^2*arctan(sqrt(-c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e)) - 105*sqrt(-c*d^2*e + a*e^3)*a*c^2*d^2*e^
5*f^2*g^2*arctan(sqrt(-c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e)) - 210*sqrt(-c*d^2*e + a*e^3)*c^3*d^5*e^
2*f*g^3*arctan(sqrt(-c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e)) + 210*sqrt(-c*d^2*e + a*e^3)*a*c^2*d^3*e^
4*f*g^3*arctan(sqrt(-c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e)) + 105*sqrt(-c*d^2*e + a*e^3)*c^3*d^6*e*g^
4*arctan(sqrt(-c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e)) - 105*sqrt(-c*d^2*e + a*e^3)*a*c^2*d^4*e^3*g^4*
arctan(sqrt(-c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e)) + 8*sqrt(c*d*f*g - a*e*g^2)*c^3*d^3*e^5*f^3 + 56*
sqrt(c*d*f*g - a*e*g^2)*c^3*d^4*e^4*f^2*g - 80*sqrt(c*d*f*g - a*e*g^2)*a*c^2*d^2*e^6*f^2*g - 175*sqrt(c*d*f*g
- a*e*g^2)*c^3*d^5*e^3*f*g^2 + 238*sqrt(c*d*f*g - a*e*g^2)*a*c^2*d^3*e^5*f*g^2 - 39*sqrt(c*d*f*g - a*e*g^2)*a^
2*c*d*e^7*f*g^2 + 105*sqrt(c*d*f*g - a*e*g^2)*c^3*d^6*e^2*g^3 - 140*sqrt(c*d*f*g - a*e*g^2)*a*c^2*d^4*e^4*g^3
+ 21*sqrt(c*d*f*g - a*e*g^2)*a^2*c*d^2*e^6*g^3 + 6*sqrt(c*d*f*g - a*e*g^2)*a^3*e^8*g^3)/(sqrt(-c*d^2*e + a*e^3
)*sqrt(c*d*f*g - a*e*g^2)*c^5*d^6*e^2*f^6*abs(e) - sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*a*c^4*d^4*e^
4*f^6*abs(e) - 2*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*c^5*d^7*e*f^5*g*abs(e) - 2*sqrt(-c*d^2*e + a*e
^3)*sqrt(c*d*f*g - a*e*g^2)*a*c^4*d^5*e^3*f^5*g*abs(e) + 4*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*a^2*
c^3*d^3*e^5*f^5*g*abs(e) + sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*c^5*d^8*f^4*g^2*abs(e) + 7*sqrt(-c*d
^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*a*c^4*d^6*e^2*f^4*g^2*abs(e) - 2*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a
*e*g^2)*a^2*c^3*d^4*e^4*f^4*g^2*abs(e) - 6*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*a^3*c^2*d^2*e^6*f^4*
g^2*abs(e) - 4*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*a*c^4*d^7*e*f^3*g^3*abs(e) - 8*sqrt(-c*d^2*e + a
*e^3)*sqrt(c*d*f*g - a*e*g^2)*a^2*c^3*d^5*e^3*f^3*g^3*abs(e) + 8*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2
)*a^3*c^2*d^3*e^5*f^3*g^3*abs(e) + 4*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*a^4*c*d*e^7*f^3*g^3*abs(e)
 + 6*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*a^2*c^3*d^6*e^2*f^2*g^4*abs(e) + 2*sqrt(-c*d^2*e + a*e^3)*
sqrt(c*d*f*g - a*e*g^2)*a^3*c^2*d^4*e^4*f^2*g^4*abs(e) - 7*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*a^4*
c*d^2*e^6*f^2*g^4*abs(e) - sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*a^5*e^8*f^2*g^4*abs(e) - 4*sqrt(-c*d
^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*a^3*c^2*d^5*e^3*f*g^5*abs(e) + 2*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a
*e*g^2)*a^4*c*d^3*e^5*f*g^5*abs(e) + 2*sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*a^5*d*e^7*f*g^5*abs(e) +
 sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g - a*e*g^2)*a^4*c*d^4*e^4*g^6*abs(e) - sqrt(-c*d^2*e + a*e^3)*sqrt(c*d*f*g
 - a*e*g^2)*a^5*d^2*e^6*g^6*abs(e))

Mupad [F(-1)]

Timed out. \[ \int \frac {(d+e x)^{5/2}}{(f+g x)^3 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=\int \frac {{\left (d+e\,x\right )}^{5/2}}{{\left (f+g\,x\right )}^3\,{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{5/2}} \,d x \]

[In]

int((d + e*x)^(5/2)/((f + g*x)^3*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2)),x)

[Out]

int((d + e*x)^(5/2)/((f + g*x)^3*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2)), x)